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The (k - 1)-dimensional simplex is projected onto the convex hull of the kth
roots of unity in iC, and a dihedral-group-invariant Dirichlet-type measure is
thereby constructed. The integrals of monomials z,"zn are obtained as single sums.
A certain radial measure on the disc is obtained as a weak-*limit. © 1992 Academic

Press. Inc.

By projecting a simplex onto a regular polygon we define a parametric
family of measures and obtain formulas for the integrals of monomials.
One of the main results can be stated as follows: choose k = 3,4,5, ...,
ex; > 0, a, bEe such that lal <! and Ibl <!; let w:= e2

"i1k, Ek :=
{(to, tl> ..., tk_dE~k: t)~O (eachj), :r.j,:d t;= l}, then

r(k) ( k-I )-k~----.:;f 1- L (awl + bw -l) t)
T(ex;) Ek l=o

X (tot l •• , tk_I)~-I dto dt i .•. dtk_ 2

= I I I (ex;)m(ex;)n(k(m + n + ex;)b) km+)b kn +).
m~O n=O )=0 m! n! j!(k(m + n + ex;) + 1)) a

In effect, we map Ek onto the unit k-gon X k (the closed convex hull of
the kth roots of unity) by the function z:= r.j,:d t)w l . The stated formula
immediately leads to a single-sum expression for the integral of zmzn
(m, n E 7L +). The method involves expansions related to the Lauricella FD

function and Chebyshev polynomials. We also show that the sequence of
(normalized) measures, where k -+ etJ and ex; = A./k for a fixed A. > 0,
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converges weak-* to (Aln) (1-lzI 2
)A-

1 dm 2(z) on the unit disc (m 2 is the
Lebesgue measure on ~2 ~ C).

When k is even, there is a two-parameter version of the integral; the
details are in Section 2. The author was led to studying these measures in
the investigation of fractional integrals associated to orthogonal polyno­
mials with dihedral symmetry [5]. Accordingly the measures in the present
work have an invariance property for the dihedral group, which ;s
generated by the rotation Z H Z01 and the reflection Z H Z. Thus, instead of
k parameters in the general Dirichlet distribution, there are just one or two
parameters (as k is odd or even, respectively).

1. THE ONE-PARAMETER CASE

Choose k = 2,3,4, ... and IX> O. Define the probability measure on Ek

(simplex in ~k) by

(this is a special case of the DiricWet distribution: it can be interpreted as
a measure in ~k-l with tk - 1 := 1- I,J,:-l tj ). We use the same name for
the measure induced on X k by the equation

(for continuous functions f on X k ). Note the invariance properties:

f f(01z) dp,,(z) = f fez) dp,,(z) = f fez) dji.,,(z).
~ ~ 4

For m = (mo, ...,mk- 1 ) EZ,=+- let Iml =I,J,:-d mj and m!:= mo!m l !.. ·mk - J !,
and if x = (xo, x I' ... , Xk _, dECk let x m := xZ'° ... x'k'':...-r

An iterated beta integral (e.g., Exton [6, p.222]) shows that
SEktO'° ... tk'':...-lldp,,=I1J,:-d(IX)m/(kIX)lml' for mEZ,=+-. Now let XECk with
Ix) < 1 each j, and let n E Z +' then

f (k-l)n n' (IX) ... (Ci.), . ~ rna mk-l m
~ x·t· df1 =-- ~ X

Ek j~O ] ] "(kIX)n md:~.lml=n m!
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by the multinomial theorem. Multiply both sides by (krx.)n/n! and sum over
n E 7L + to obtain

t
k

(1- :t: tjXj) -ka dJla =)X (l-x)-a

(this formula was used by Carlson [2] with k parameters to study
Dirichlet averages of functions; see also his related work [1] on
Lauricella's F D function).

To obtain the desired integral, we let xj = awj + bw -j and find a useful
form for nJ':-ol (1- x;) by means of Chebyshev polynomials. It is
convenient to work with a homogeneous polynomial.

1.1. DEFINITION. For k=1,2, ...,w:=e2rriik let Pk(t,a,b):=nJ,.:-d(t­
(aw j + bw-j )), (t, a, b) E C).

Since Pk is a polynomial we can restrict the variables by 0 < labl < Itl 2/4
and introduce an auxiliary variable: ~ :=(t-Jt2-4ab)/2 (the principal
branch of the square root). Thus ~(t - 0 = ab and I~I < 2lab/tl < Itl/2.

1.2. PROPOSITION.

[k/2] k (k - .)
Pk(t,a,b)= L (-l)j k-. . ) tk-2jajbj_(ak+bk)

j~O } }

= 2(ab)k/2Tk(t/(2 ~)) - (ak + bk )

= (t - Ok(l - (a/(t - ~))k)(l - (b/(t - ~)l)

(where Tk is the Chebyshev polynomial Tk (cos 0) = cos kO).

Proof In the definition of Pk replace t by ~ + abg Thus

k-l

Pk(t,a,b)= L (~-awj-bw-j+ab/~)
j~O

k-l

= n [~-I(~-awj)(~-bw-j)]

j~O

= ~-k(~k _ ak)(~k _ bk)

= (abg)k(l- (~/a)k)(I-(~/b)k).

This is the third part of the proposition because abg = t -~, ~/a = b/(t- ~),

and ~/b=a/(t-~). Also the product equals ~k_(ak+bk)+(ab/Ok. The
Chebyshev polynomials satisfy Tk((z + z -1)/2) = (Zk + Z-k)il for arbitrary
z E C, z # O. Thus ~k + (ab/O k =2(ab)kI2Tk«~ + ab/O/(2 v'ab)) and t = ~ +
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ab/~. A standard formula for Tk gives the first part (summation formula)
of the proposition. (Note that (k/(k - j))(k j j) = (k -~+ I) - (kj~21) E Z.) I

At this point, we know

f (1 -( b:;)·)-k~d -p (1 b\-~az + ~ /1~ - k ,a, ! •

Xk

Since Pd1, a, b) is an expression in ab and ak + bk this reiterates the fact
that JXk zmzn d/1~ = 0 unless m == n mod k, which was already evident from
the invariance properties of /1". However, Pk(l, a, b) has [k/2] + 3 terms
and the direct expansion using the multinomial theorem would use
[k/2] + 2 summation variables (for a power series in a, b).

For k=3, we can obtain Sx3ZI+3sZld/1~ as a single sum immediately.
Indeed, P3(1,a,b)=1-3ab-(a3+b3), and

Thus

• (/+ 3s)' I' [1/3] (()() 3'-3mJ 7 1+ 35 ;;;1 d - .. L I+s-m
X3 - L. /1~- (3()(b+3s m~Om! (m+s)! (I-3m)!

In this case, the measure /11 is exactly the (normalized) area measure on the
triangle X 3 (since the simplex £3 is two-dimensional). This integral was
studied (but not found explicitly) in [3]. A recurrence formula for the
integral and some families of orthogonal polynomials were obtained (note
that the variable ()( in that paper corresponds to ()( - 1 in this one).

To make further progress on the expansion of Pk( 1, a, b) -~ we use the
triple product formula in Proposition 1.2. Specialize to t = 1 and let
C:= (1 - ,,/1 - 4ab )/2 (a special value of ~).

1.3. PROPOSITION. P k ( 1, a, b) = (l-C)k(1- (a/(l- C))k)( 1- (b/( 1-C»k),

and lei < 2labl,for labl <!.

A quadratic transformation for hypergeometric series gives the power
series expansion for (1 - 0 -)' in terms of abo

1.4. LEMMA. For labl < t y =I -1, - 2, - 3, ... ,
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Proof Start with the standard quadratic transformation (see, e.g.,
Gasper and Rahman [7, p.60 (3.17)])

2F[(2c, 2d; c + d + 1/2; 0 = 2F[(C, d; c + d + 1/2; 4(1- ())

(to prove this expand the right side with the binomial theorem and use
Saalschiitz's summation formula), and let c = 1'/2, d = ()' + 1)/2 (so
c+d+ 1/2=2d). Then

(1- o-y = 2 F[(y/2, (1' + 1)/2;), + 1; 4(1- 0)

= I (1')2J 'l (((1- O)J,
J~o('}'+I)J)'

since

1.5. THEOREM. For lal, Ibl <!,

f (1-(az+bZ))-k~dfJ.~
Xk

= ~ ~ ~ (lX)m(lX)n(k(m + n + 1X))2J km+Jb kn +J
L L L ".,(k( ) 1) a .m=O n~O J~om. n.). m+n+1X + J

Proof The integral equals

(by Proposition (1.3))

= (1- 0 -k~ I (IX);, akm(1- o-km ~ (lX~n bkn(1_ 0 -kn.
m~O m. n=O n.

Now rearrange the sum and expand (1_0- k(m+nu) by Lemma 1.4. I

We use the theorem to find the nonzero moments of the measure fJ.~.

1.6. THEOREM. For s, IE Z + ,

=f zlzks+ldfJ.~=(ks+l)!I!
Xk

(~k] (IX) (IX)
X I n+s n

n~O (n+s)! n! (l-kn)! (klX)k(2n+s)(k(2n+s+IX)+ n-kn
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Proof The desired integral equals 1!(ks+l)!j(krx)ks+21 times the
coefficient of aks+1bl in the triple sum; thusj=l-kn, m=n+s. Note that
(rxk )ks + 21 = (O(k )kl2n +s)(k(0( +2n + s) hu- kn)' I

In the special case 0::::; I < k, this integral simply equals
(ks + I)!(O( + l)s/s! (l + kO( }ks +i"

We compare the measure /lex on X k with the area measure m 2 (there does
not seem to be a tractable measure of Dirichlet (beta) type on X k for
k> 3). By the methods of [4 J where area measure was used on X 6 for
practical reasons,

Except for the crystallographic values k = 3,4,6, the argument cos 2(rr/k) is
irrational. There is no convenient relationship to the measures /lex on Xk .

On the other hand /lex agrees (as a linear functional) on polynomials of
degree < k with a certain measure on the unit disc, This measure is in the
parametric family associated to the disc polynomials (an orthogonal
family, see Koornwinder [9, pp.448-449J).

Indeed, for A> 0, define

a probability measure on the unit disc D:= {z E iC: Izi ::::; 1}. Further
b zmzn dv;Jz} = bmn(m!/(..1. + 1)m) (by use of polar coordinates and the beta
integral). For lal, Ibl < 1we have that

(by Lemma 1.4). This shows that Vkex has the same moments (integrals of
zmzn) as /lex up to degree k - 1.

640/69/2-8
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1.7. PROPOSITION. Fix A> 0 and let a3 , a4 , as, ... be a sequence of
positive numbers such that ka k --+ Jc; then the sequence Jl~k (measure on X k )

converges weak-* to v;[ (in the dual space of C(D)).

Proof For any polynomial p(z, i),

J p(z, i) dJl~k --+ J p(z, i) dv ;[(z)
Xk D

(since for all large k, k > deg p). Polynomials are uniformly dense in C(D)
and the sequence of measures is bounded in norm. I

This is a special case of a result of Jiang [8] who found weak-* limits
of general Dirichlet measures on polygons in the unit circle subject to
certain regularity conditions on the parameters. The proof depends on
characteristic functions, rather than the explicit polynomial formulas used
here.

2. THE TWO-PARAMETER CASE

When k is even the rotation group of X k has a subgroup of index 2 and
thus allows the introduction of another parameter while maintaining some
invariance properties.

Let k = 2h, h = 1, 2, ... ; w = e
2

1f.i/k = e1f.i/h. Choose parameters a, f3 > 0 and
define

a measure on Ek> or X k (as in Section 1). Iff is a continuous function on
Xk> the following hold:

By the same methods as in Section 1 we claim that

(where Ixjl < 1 each j). For numbers a, b with lal, Ibl <!, and x j =
awj + bw-

j
as before, n51~d (1- X2j) = PIz(l, a, b) and nJ~d (1- X2j + 1) =

Ph(l, aw, bw). Of course, Pdl, a, b) = Ph(l, a, b) Ph(l, aw, bw), which
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shows how the integral formula collapses to the one-parameter case when
'l. = fJ. The polynomial

p h( 1, aw, bw) = 2( ab )h'2Th( 1/,.jab) )+ (ah+ bh)

= (1- Oh(1 + (a/'(1-~) )h)( 1+ (b/(l _ ())h)

by the same trick as in 1.3, a slight difference from Ph( 1, a, b). The extra
parameter necessitates more summation variables which possibly excuses
some more notation.

Already in the trivial case k = 2 (where z = 2to- 1)

. F(a+b) II
..,.ll _ _ 12:1 - 1 _ ~ f3 - 1 _ "I.'L

2
'" d/l X{3-r(7.)F(fJ) ° (lto 1) to (l '0) dto-,,,(a,fJ),

where

, (a fJ)'- n! ~ (:X)n-j(fJ)j. -1 j
}", .- ( + fJ) L. ( - ." 'J ( ) ,

:t "j~O n J).].

essentially a general terminating 2FI evaluated at -1. We collect some
properties of i'nilX, fJ).

2.1. LEMMA. For :t;;"0, fJ;;"O, lX+fJ>O, and nE1L+,

(i) (1 - t) -(X( 1+ t) -{3 = L;:C~o ((a + fJ)n/n! h'n(a, fJ) {" for I[! < 1;

(ii) (,,(fJ, a) = (-1 rYn(:t, fJ);

(iii) [}'n(a, fJ)J ~ 1;

(iv) Y2n(:t, fJ) > 0;

(v) sgn I'2n+ I(:t, fJ) = sgn(1X - fJ)·

Proof The generating function (i) and properties (ii) and (iii)
are obvious (recall L;~o (lX)n_j(fJ)j(n-j)!jl=(a+fJ)/n!, the Chu­
Vandermonde sum). By (ii) it suffices to consider IX;;" /3. In this case

which shows that }'n(lX, fJ) = (n!/(IX + fJ)n) I~;'3d (fJ)m(1X - fJ)n-2m/m! (n - 2m)!.
This shows i'll( IX, fJ) > °for n = 0, 1, 2, ..., IX ;;" fJ, except Y2" + 1(IX, 7. ) = O. I
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2.2. THEOREM. For lal, Ibl <!.

J (1-(az+bZ))-h(~+fi)d/laP
Xk

Proof As in 1.5, the integral equals

Ph(l, a, b)-~Ph(l, aw, biiJ)-P

= (1 - O-h(~+ Pl( 1 - (a/(l - O)h) -"(1- (b/(l - O)h)-~

X (1 + (a/(l- O)h)-fi(l + (b/(l- O)h)-P

=(1-0- h(HPl f (0(+~)mYm(0(,P)ahm(1_0-hm
m=O m.

x f (0(+,P)n yn(0(,P)b hn(1_0-hn
,,=0 n.

(by use of Lemma2.1(i)). Now expand (1_0- h(HP+m+n 1 by
Lemma 1.4. I

Hence we can find the nonzero moments of /l"p.

2.3. COROLLARY. For s, IE 7L +'

The integral is positive if s is even, while if s is odd it has the same sign as
O(-P (0 ifO(=P).

Proof The formula follows from the theorem (same as 1.6). If 0( #- P,
sgn(Yn+,(O(,P)Yn(O(,P))=(sgn(O(-p))" thus each term in the sum is of the
same sign. I

2.4. COROLLARY. The measure /l~p on Xk c D (the disc) has the same
moments as vh(~ + fi) up to degree h - 1.
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Proof The only nonzero moments in this range are
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f I!
Zl71dfJ. =----,--­

Xk - afJ (h(rx+P)+l){
for 21< h. I

As in the one-parameter case, fix A> 0 and choose a sequence of pairs of
positive numbers (rxh, Ph) such that h(rxh+ Ph) --+ A as h --+ 00. Then the
measures fJ.ahfJh on X 2h converge weak-* to vias h --+ 00. This has the same
proof as 1.7.
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